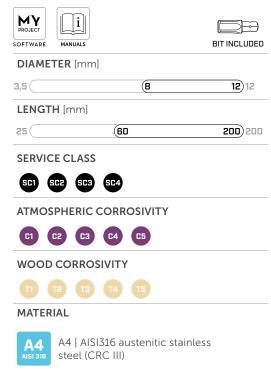
HBS PLATE A4

PAN HEAD SCREW FOR PLATES

A4 | AISI316

HBS PLATE version in A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal for environments adjacent to the sea in corrosivity class C5 and for insertion on the most aggressive timbers in class T5.

STEEL-TO-TIMBER CONNECTIONS


The under-head shoulder achieves an interlocking effect with the circular hole in the plate, thus guaranteeing excellent static performance. The edgeless geometry of the head reduces stress concentration points and gives the screw strength.

T5 TIMBER CORROSIVITY

Suitable for use in applications on agressive woods with an acidity (pH) level below 4 such as oak, Douglas fir and chestnut, and in wood moisture conditions above 20%.

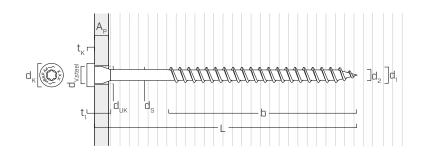
FIELDS OF USE

- timber based panels
- solid timber and glulam
- CLT and LVL
- ACQ, CCA treated timber

■ CODES AND DIMENSIONS

d_1	CODE	L	b	A_{P}	pcs
[mm]		[mm]	[mm]	[mm]	
	HBSPL860A4	60	52	1÷10	100
	HBSPL880A4	80	55	1÷15	100
8	HBSPL8100A4	100	75	1÷15	100
TX 40	HBSPL8120A4	120	95	1÷15	100
	HBSPL8140A4	140	110	1÷20	100
	HBSPL8160A4	160	130	1÷20	100
	HBSPL1080A4	80	60	1÷10	50
	HBSPL10100A4	100	75	1÷15	50
10	HBSPL10120A4	120	95	1÷15	50
TX 40	HBSPL10140A4	140	110	1÷20	50
	HBSPL10160A4	160	130	1÷20	50
	HBSPL10180A4	180	150	1÷20	50

HBSPL12120A4 120 90 1÷20	25
HBSPL12120A4 120 90 1÷20	25
LIDCH ADA ADA A	25
LIDCDI 1214044 140 110 1:20	25
12 HBSPL12140A4 140 110 1÷20	25
TX 50 HBSPL12160A4 160 120 1÷30	25
HBSPL12180A4 180 140 1÷30	25
HBSPL12200A4 200 160 1÷30	25


METAL-to-TIMBER recommended use:

■ GEOMETRY AND MECHANICAL CHARACTERISTICS

Nominal diameter	d_1	[mm]	8	10	12
Head diameter	d_K	[mm]	13,50	16,50	18,50
Internal thread diameter	d_2	[mm]	5,90	6,60	7,30
Shank diameter	d _s	[mm]	6,30	7,20	8,55
Head thickness	t_1	[mm]	6,50	8,20	8,20
Washer thickness	t _k	[mm]	4,50	5,00	5,50
Underhead diameter	d_{UK}	[mm]	10,00	12,00	13,00
Hole diameter on steel plate	d _{V,steel}	[mm]	11,00	13,00	14,00
Pre-drilling hole diameter ⁽¹⁾	$d_{V,S}$	[mm]	5,0	6,0	7,0

⁽¹⁾ Pre-drilling valid for softwood.

CHARACTERISTIC MECHANICAL PARAMETERS

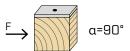
Nominal diameter	d_1	[mm]	8	10	12
Characteristic tensile strength	f _{tens,k}	[kN]	15,0	21,0	28,0
Yield moment	$M_{y,k}$	[Nm]	21,0	28,0	40,0
Recommended insertion moment	M _{ins,rec}	[Nm]	15,0	20,0	34,0

The specified insertion moment is to be considered as the maximum applicable value. Installation must stop as soon as the screw head comes into contact with the metal element.

			softwood (softwood)
Withdrawal resistance parameter	f _{ax,k}	[N/mm ²]	11,7
Head-pull-through parameter	$f_{head,k}$	[N/mm ²]	10,5
Associated density	$ ho_{a}$	[kg/m ³]	350
Calculation density	ρ_k	[kg/m³]	≤ 440

For applications with different materials please see ETA-11/0030.

MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER

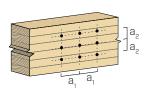

screws inserted WITHOUT pre-drilled hole

 $\rho_k \leq 420 \; kg/m^3$

d_1	[mm]		8	10	12
a ₁	[mm]	12·d·0,7	67	84	101
a ₂	[mm]	5·d·0,7	28	35	42
a _{3,t}	[mm]	15·d	120	150	180
a _{3,c}	[mm]	10·d	80	100	120
a _{4,t}	[mm]	5·d	40	50	60
a _{4.c}	[mm]	5·d	40	50	60

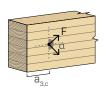
d_1	[mm]		8	10	12
a ₁	[mm]	5·d·0,7	28	35	42
a ₂	[mm]	5·d·0,7	28	35	42
a _{3,t}	[mm]	10·d	80	100	120
a _{3,c}	[mm]	10·d	80	100	120
a _{4,t}	[mm]	10·d	80	100	120
a _{4,c}	[mm]	5·d	40	50	60

screws inserted WITH pre-drilled hole



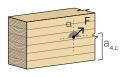
<u> </u>	→	α-υ	
	8	10	1
-	00	7.5	4

d_1	[mm]		8	10	12
a ₁	[mm]	5·d·0,7	28	35	42
a ₂	[mm]	3·d·0,7	17	21	25
a _{3,t}	[mm]	12·d	96	120	144
a _{3,c}	[mm]	7∙d	56	70	84
a _{4,t}	[mm]	3·d	24	30	36
a _{4,c}	[mm]	3·d	24	30	36



d_1	[mm]		8	10	12
a ₁	[mm]	4·d·0,7	22	28	34
a ₂	[mm]	4·d·0,7	22	28	34
a _{3,t}	[mm]	7·d	56	70	84
a _{3,c}	[mm]	7·d	56	70	84
a _{4,t}	[mm]	7·d	56	70	84
a _{4,c}	[mm]	3·d	24	30	36

stressed	end
-90° < α	< 90°



unloaded end

stressed edge 0° < α < 180°

NOTES

- The minimum distances comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- In the case of timber-to-timber joints, the minimum spacing (a_1, a_2) can be multiplied by a coefficient of 1,5

 $[\]alpha$ = load-to-grain angle

 $d = d_1 = nominal screw diameter$

					SH	TENSION						
geometry			timber-to-timber ε=90°	timber-to-timber ϵ =0°		steel-to-timber thin plate		o-timber plate	thread withdrawal ε=90°	thread withdrawal ε=0°	head pull-through	
	d,	11111111111111	A		***	Splate		Splure	←			
d_1	L	b	Α	R _{V,90,k}	$R_{V,0,k}$	S _{PLATE}	R _{V,90,k}	S _{PLATE}	R _{V,90,k}	R _{ax,90,k}	R _{ax,0,k}	R _{head,k}
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]	[kN]	[kN]
	60	52	8	1,08	1,08		3,03	8	4,78	5,25	1,58	2,07
	80	55	25	2,46	1,70		4,11		5,27	5,56	1,67	2,07
8	100	75	25	2,46	2,06	4	4,64		5,77	7,58	2,27	2,07
o	120	95	25	2,46	2,06		5,14	0	6,28	9,60	2,88	2,07
	140	110	30	2,60	2,18		5,48		6,66	11,11	3,33	2,07
	160	130	30	2,60	2,18		5,48		7,16	13,13	3,94	2,07
	80	60	20	3,04	2,07		4,75		6,74	7,58	2,27	3,09
	100	75	25	3,15	2,59		5,79		7,21	9,47	2,84	3,09
10	120	95	25	3,15	2,65	5	6,42	10	7,84	12,00	3,60	3,09
10	140	110	30	3,30	2,78		6,85	10	8,31	13,89	4,17	3,09
	160	130	30	3,30	2,78		6,85		8,94	16,42	4,92	3,09
	180	150	30	3,30	2,78		6,85		9,58	18,94	5,68	3,09
	100	75	25	3,92	2,99		6,76		9,01	11,36	3,41	3,88
	120	95	25	3,92	3,28		7,96		9,77	14,39	4,32	3,88
12	140	110	30	4,06	3,42	6	8,53	12	10,33	16,67	5,00	3,88
12	160	120	40	4,44	3,76		8,72	12	10,71	18,18	5,45	3,88
	180	140	40	4,44	3,76		8,72		11,47	21,21	6,36	3,88
	200	160	40	4,44	3,76		8,72		12,23	24,24	7,27	3,88

 ϵ = screw-to-grain angle

STRUCTURAL VALUES

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- The coefficients γ_M and $k_{\mbox{\scriptsize mod}}$ should be taken according to the current regulations used for the calculation.
- For the mechanical resistance values and the geometry of the screws, reference was made to ETA-11/0030.
- Sizing and verification of the timber elements, panels and metal plates must be done separately.
- The screws must be positioned in accordance with the minimum distances.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- Shear strengths were calculated considering the threaded part fully inserted in the second element.
- The thread withdrawal characteristic strength has been evaluated considering a fixing length equal to b.
- The head pull-through characteristic strength was calculated using timber elements.

In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.

NOTES

- The characteristic timber-to-timber shear strengths were evaluated considering both an ϵ angle of 90° $(R_{V,90,k})$ and 0° $(R_{V,0,k})$ between the grains of the second element and the connector.
- The characteristic steel-timber shear strengths were evaluated considering an angle ϵ of 90° between the grains of the timber element and the connector.
- The characteristic plate shear strengths are evaluated considering the case of thin plate ($S_{PLATE} = 0.5 d_1$) and thick plate ($S_{PLATE} = d_1$).
- The characteristic thread withdrawal resistances were evaluated considering both an ϵ angle of 90° $(R_{ax,90,k})$ and of 0° $(R_{ax,0,k})$ between the grains of the timber element and the connector.
- For the calculation process a timber characteristic density ρ_k = 385 kg/m 3 has been considered.

For different values of ρ_k , the strength values in the table (timber-to-timber shear, steel-to-timber shear and tensile) can be converted by means of the coefficient k_{dens} .

$$\begin{aligned} R'_{V,k} &= k_{dens,v} \cdot R_{V,k} \\ R'_{ax,k} &= k_{dens,ax} \cdot R_{ax,k} \\ R'_{head,k} &= k_{dens,ax} \cdot R_{head,k} \end{aligned}$$

ρ _k [kg/m³]	350	380	385	405	425	430	440
C-GL	C24	C30	GL24h	GL26h	GL28h	GL30h	GL32h
k _{dens,v}	0,90	0,98	1,00	1,02	1,05	1,05	1,07
k _{dens,ax}	0,92	0,98	1,00	1,04	1,08	1,09	1,11

Strength values thus determined may differ, for higher safety standards, from those resulting from an exact calculation.